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ABSTRACT 

The successive stages of the fireball due to a nuclear explosion in 

air are defined (Sec. 2). This paper is chiefly concerned with Stage C, 

from the minimijm in the apparent fireball temperature to the point where 

the fireball becomes transparent. In the first part of this stage (C l), 

the shock (which previously was opaque) becomes transparent due to 

decreasing pressure. The radiation comes from a region in which the 

temperature distribution is given essentially by the Taylor solution; the 

radiating layer is given by the condition that the mean free path is 

about 1/50 of the radius (Sec. 5). The radiating temperatiire dtiring this 

stage Increases about as p ' , where p is the pressure. 

To stcpply the energy for the radiation, a cooling wave proceeds from 

the outside into the hot interior (Sec. 5). When this wave reaches the 

isothermal sphere, the temperature is close to its second maximum. There

after, the character of the solution changes; it is now dominated by the 

cooling wave (Stage C II). The temperature woiild decrease slowly (as 

1/6 
p ' ) if the problem were one-dimensional, bvrt in fact it is probably 

nearly constant for the three-dimensional case (Sec. 6). The radiating 

surface shrinks slowly. The cooling wave eats into the isothermal sphere 

until this is completely used xig* The inner part of the isothermal sphere. 
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i.e., the peirt which has not yet been reached by the cooling wave, con

tinues to expand adiabatically; it therefore cools very slowly and 

remains opaque. 

After the entire isothermal sphere is used trp, the fireball becomes 

transparent and the radiation drops rapidly. The ball will therefore be 

left at a rather high temperature (Sec. 7), about 5000 . 

The cooling wave reaches the isothermal sphere at a definite pres

sure p w 5(P,/PQ) bars, where p^ is the ambient and p. the sea level 

density. The radiating temperature at this time is about 10,000 . The 

slight dependence of physical properties on yield is exhibited in approx

imate formulae. 
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1. INTRODUCTION 

The radiation from the fireball has been studied Intensively by 

many authors. Already in the Simmer Study at Berkeley in 19^2, Bethe 

and Teller found that the energy transmitted by a nuclear explosion 

into air is immediately converted into x-rays, and studied the qualita

tive features of the transmission of these x-rays. At Los Alamos, 

2 
Marshak and others showed that this radiation propagates as a wave, 

3 

with a sharp front. Hirschfelder and Magee gave the first comprehensive 

treatment of this early phase of the fireball development, and also 

Gtiodied some of the later phases, especially the role of NO-. 

Many optical observations have been made in the numerous tests of 

atomic weapons. Some of the results are contained in "Effects of Nuclear 

Weapons," pp. 70-8J+ (see also pp. 316-3^8). A summary of the spectro-

scopic observations vcp to 1956 was compiled by DeWitt. Careful scrutiny 

of the extensive observational material would xmdoubtedly give a wealth 

of further information. 

On the theoretical side, there has been some analytical and a good 

deal of numerical work. Analytical work has concentrated on the early 

phases. One of the most recent analytical papers on the early flow of 
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radiation (Stage A of Sec. 2) is by Freeman. Erode and Gilmore treat 

also Stage B, the radiation from the shock front, with particular eraphasi 

on the dependence on alt it tide. 
Q 

The most ccniplete numerical calcvilation has been done by Brode on 

a sea level megaton explosion. We shall use his re stilts extensively, 

but for convenience we shall translate them to a yield of 1 megaton. 

Wherever the phenomena are purely hydrodynamic, we may simply scale the 

linear dimensions and the time by the cube root of the yield, and this 

is the principal Tise we shall make of Brode's resiilts, e.g. in Sec. 3b. 

Where radiation is Important, this scaling will give only a roi;igh guide. 

Brode calculates pressures, temperatures, densities, etc., as fvuictions 

of time and radius, for scaled (l-megaton) times of about 10" to 10 

seconds. The calculations show clearly the stages in fireball and shock 

development, as defined in Sec. 2, at least Stages A to C. 
9 

Brode and Meyerott have considered the physical phenomena involved 

in the optical "opening" of the shock after the minlmxmi of radiation. 

Stage C I in the nomenclature of Sec. 2, especially the decrease in 

opacity due to decreased density and to the dissociation of NOp. 

Zel'dovich, Konipaneets and Raizer have investigated how the energy 

for the radiation is supplied after the radiation minimvm and have intro

duced the concept of a "cooling wave" moving into the hot fireball. The 

present report is largely concerned with an extension of the ideas of 

Zel'dovich et al. to the actual case of density varying with time, more 

general opacity function, radiation absorption varying with wave length, 

etc. 
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Much effort has been devoted to the calculation of fireballs at 

various altitudes. Brode made such calculations in 1958> in connection 

12 
with the test series of that year. Gilmore made a prediction of the 

Bluegill explosion in 1962. Since then, many more refined calcvilations 

of Bluegill have been made. 

For any understanding of fireball phenomena it is essential to have 

a good equation of state for air and good tables of absorption coeffi-

13 cients. For the equation of state, we have used Gilmore's tables, 

although Hilsenrath's give more detail in some respects. The two cal

culations agree. Gilmore's equation was approximated analytically by 
Q 

Brode. 

For the absorption coefficient we have used the tables by Meyerott 

et al., ' which extend to 12,000 . These were supplemented by the 

work of Kivel and Bailey and more recent work by Taylor and Kivel on 

the free-free electron transitions in the field of neutral atoms and 

molecules. At higher temperatures, there are calculations by Gilmore 

19 20 21 

and Latter, Keirzas and Latter, and curves by Gilmore which are 

bro\:ight up to date periodically. The most recent calculation on the 

absorption of air at about l8,000 and above have been done by Stuart 
22 

and Pyatt. This temperature range is not of great importance for the 

problem of this paper, but is important for the expansion of the iso

thermal sphere inside the shock wave before it is reached by the cooling 

wave. 
8 

Brode has used the average of the absorption coefficient over 
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frequency, the opacity, which is sufficient for treating the internal 

flow of radiation. A realistic treatment of the flow to the oiitside 

requires the absorption coefficient as a function of frequency; Brode 

merely wanted to obtain reasonable overall results for this flow. He 

approximated the opacity by an analytic expression. Also in most of the 

other work cited above an average opacity has been vised. An exception 

is some of the recent work on the radiation flow in high altitude explo

sions (Bluegill), where the frequency dependence must be, and has been, 

21 
taken into account. Gilmore has calculated and made available cvirves 

of effective opacity, in which the radiation mean free path was averaged 

(using a Rosseland weighting factor) only over those frequencies for 

which it is less than 1 kilometer. 

This list of references on work on the fireball dynamics and opac

ity is far from complete. 

2. PHASES IN DEVELOPMENT 

The energy from a nuclear explosion is transmitted throijgh the outer 

parts of the weapon, incl\jding its case, either by radiation (x-rays) or 

by shock or both. Whichever the mode of transmission inside the weapon, 

once the energy gets into the surrounding air, the energy will be trans

ported by x-rays. This is because the air will be heated to such a high 

temperatvire (a million degrees or more) that transport by x-rays is much 

faster than by hydrodynamics. This stage of energy transport (Stage A) 

has been extensively studied by many authors (e.g., Hirschfelder and 
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Magee in Report LA-2000) and will therefore not be further considered 

here. 

During Stage A, temperatures are very high. The Planck spectrum of 

the air is in the x-ray or far xiLtraviolet region, and hence is immedi

ately absorbed by the surroimding air. The very hot air is therefore 

siorrounded by a cooler envelope, and only this envelope is visible to 

observers at a distance. The observable temperature therefore has little 

physical significance. It is observed that the size of the luminous 

sphere increases rapidly, and the total emission also Increases, itp to 

a first maximum. 

When the temperature of the central sphere of air has fallen, by 

successive emission and re-absorption of x-rays, to about 500,000 , a 

hydrodynamic shock forms. The shock now moves faster than the tempera

ture could propagate by radiation transport. The shock therefore sepa

rates from the very hot, nearly isothermal sphere at the center. This 

is Stage B in the development. The shock moves by simple hydrodynamics. 

Its front obeys the Hugoniot relations, the density being given by (3»^)« 

Behind the front, the air expands adiabatically, and at a radiiis of 805̂  

of the shock radius, the density is apt to have fallen by a factor of 10 

or more compared to the shock density, while the temperature has risen 

by a comparable factor, (3.16). Thus the interior is at very low density, 

and hence the pressure must be nearly constant (otherwise there would be 

very large accelerations which soon wotild equalize the presstire). This 

greatly simplifies the stincture of the shock, and leads to such simple 

13 



relations as (3.2) between shock radius and pressure. 

Well inside the shock, the "isothermal sphere" pursues its separate 

history. It continues to engulf more material because radiation flow 

continues, though at a reduced rate. H. Brode has kindly calculated for 

me the temperat\ire histories of several material points, based on his 

paper RM-22i)-8. These histories clearly exhibit the expansion of the iso

thermal sphere in material coordinates. The expansion can also be treated 

by a semi-analytic method which I hope to discuss in a subsequent paper. 

The isothermal sphere remains isolated from the outside world imtil it 

is reached by the cooling wave, Sec. 5' 

The radiation to the outside now comes from the shock. Early in 

Stage B, the shock has a precursor of lower temperature, caused by xiltra-

violet radiation from the shock, and the observable temperature is still 

below the shock temperature (Stage B l). However, the observable radius 

is very near the shock radixis. Later, as the shock front cools down, 

the shock radiates directly and its temperature becomes directly observ

able (stage B II). The first maximum in visible radiation probably 

occurs between Stages B I and B II. As the shock cools down, the radi

ation from the shock front decreases, and the observable temperature 

decreases to a minimvim (Ref. 4, par. 2.113, P* 75) of about 2000 . 

When the shock is sufficiently cool, its front becomes transparent, 

and one can look into it to higher temperatures (Stage C). The central 

isothermal sphere, however, remains opaque and, for some time, invisible. 

Because higher temperattires are now revealed, the total radiation increases 
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toward a second maximum. This stage has been very little considered 

theoretically, except in nvmerical calculations, and forms the subject 

of this report. 

We shall show that for some time in Stage C, the radiation comes 

from the air between isothermal sphere and shock front (Stage C I ) . 

During this time, the radiation can be calciilated essentially from the 

temperature distribution which is set up by the adiabatic expansion of 

the material behind the shock (Sees. 3 and 5f>g). The temperature and 

total intensity of the radiation Increase with time toward the larger, 

second maxlmimi. 

The energy for the radiation is largely supplied by a cooling wave 

(Sec. 5) which gradually eats into the hot interior. When this cooling 

wave reaches the isothermal sphere, the radiation teniperatitre reaches 

its maximum (Sec. 5e); it then declines again as the cooling wave eats 

more deeply into the isothermsil sphere (Stage C II). This process ends 

by the isothenual sphere being completely eaten ear&y (Sec. 6). 

After this has happened, the entire fireball, isothermal sphere and 

cooler envelope, is transparent to its own thermal radiation (Stage D). 

The molectilar bands, which previously appeared in absorption, now appear 

in emission (Stage D l). Emission will lead to further cooling of the 

fireball, though more slowly than before. Soon, when the temperature 

falls below about 6000 , the emission becomes very weak, and subsequent 

cooling is almost entirely adiabatic (Stage D II). At sea level, the 

pressure may go dovm to 1 bar before the temperature falls below 6000 ; 
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in this case there is no Stage D II. At higher elevation, there usually 

is. 

The fireball will then remain hot, at about 60OO or a somewhat 

lower temperature due to adiabatic expansion in Stage D II. The only 

process which can now lead to fvirther cooling is the rise of the fire

ball, which leads to fvirther adiabatic expansion and, more important, to 

turbulent mixing at the surface with the ambient air (Stage E). The 

time required for this is typically 10 seconds or more, being determined 

by buoyancy. 

At very high altitude, the shock wave never plays an important part, 

but radiation transport continues until the temperat-ure gets too low for 

effective emission. In other words, Stage A continues to the end. Of 

course, a shock does form, but it is, so to speak, an afterthought, and 

it plays little part in the distribution of energy. At medium altit-ude, 

let us say, 10 to 30 kilometers, the stages are much the same as at sea 

level but the shock wave becomes transparent earlier, i.e., at a higher 

temperature, because the density is lower; this means that the minimum 

emission comes earlier. Stage C proceeds similarly to sea level, but 

at the second maximum of radiation the pressure is still much above 

ambient, therefore Stage C II involves a greater radial expansion of the 

isothermal sphere than at sea level which proceeds simultaneously with 

the inward motion of the cooling wave. Moreover, there is much adia

batic expansion after the cooling wave has penetrated to the center. 

The temperature at which radiation stops is higher, due to the lower 

density. 
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We believe that the theory developed in this paper will be useful 

in stxidying the dependence of phenomena on altitude (ambient pressure), 

but we have not yet exploited it for this pinrpose. 

3. RADIATION FRCM BEHIND THE SHOCK (Stage C l) 

a. Role of NO-

The diatomic species in equilibriimi air, both neutrals and ions, 

show very little absorption in the visible at temperatures iip to abotit 

UOOO K. This is shown clearly in the tables by Meyerott et al. We 

define "the visible" for the piirposes of this paper, arbitrarily and 

incorrectly, as the frequency range 

hv = 1/2 to 2-3A ev 

= iK)50 to 22,300 cm""̂  

= 2.iv8 to 0.î 5 [^ (5.1) 

Then, even at a density as high as lOp- (p- = density of air at NTP 

-3 / 3 = 1.29 ^ 10 gm/cm ), the mean free path is never less than 100 meters 

at ii-000 , 1000 meters at 3000 , and still longer at lower temperature. 

These values refer to hv = 2-5/8 ev; for lower frequencies, the mean 

free path is even longer. 

In the sea-level shock wave from a megaton explosion, the temper

ature range from 3000 to 4000 occupies a distance of about 10 meters 

(see Sec. 3h). Thus this region is definitely transparent, even at the 
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highest possible density of about lOp-. For explosions at higher alti

tude, this conclusion is even more true. 

The tables by Meyerott et al. do not include absorption by triatomic 

(and more coniplicated) molecules. Of these, NO^ is known to have strong 

absorption bands in the visible. After this paper was completed, I 

23 
received new calcvilations by Gilmore -^ which include the effect of N0_. 

The effect is very striking as is shown by Table I, which gives the 

absorption coefficient for the "typical" frequency hv = 2-l/8 ev, and 

for several temperatures and densities (the absorption is strong from 

about 1-3A to 2-3/lf ev). 

Table I, Absorption Coefficients at hi/ = 2-1/8 ev 
with and without NO^ 

p/Po 

T 

Without 

With 

w j . bx i < 

10 

2000 

0 

5.5-5 

a i i u w j . u i i u u . L > 

10 

3000 

1.7-« 

1.2-2 

H U p 

10 

Uooo 

8.5-^ 

1.5-2 

10 

6ooo 

5.1-= 

5.1-2 

1 

3000 

1.7-5 

3.7-'* 

Note: For each value, the power of 10 is indicated by a superscript. 

Because N0„ is triatomic, its absorption depends strongly on density. 

As the shocked gas expands, the NO- dissociates and the gas becomes trans-

9 
parent. Brode and Meyerott have calculated, under reasonable assunip-

tions, the effect of this dissociation on the optical properties of the 

fireball. We shall not discuss the effect of NO^ any further, but shall 

assume that this substance has almost disappeared by the time we are con

sidering. 
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b. Temperature Distribution behind the Shock 

We wish to calculate the temperature distribution behind the shock. 

We can do this because the material which has gone through the shock 

expands very nearly adiabatically, as long as it is not engulfed by the 

internal, hot isothermal sphere. We are interested in the period when 

the shock temperature goes from about i|-000 to a few hundred degrees, i.e., 

xmtil the strong cooling wave (Sec. 5) starts. For a l-megaton explosion, 

this corresponds roioghly to t = 0.05 to 0.25 second. 

At a given time, the pressure is nearly constant over most of the 

volvmie inside the shock, except for the immediate neighborhood of the 

shock; the shock pressure is roughly twice this constant, inside pressiire. 

Comparing two material elements in the "inside" region, we may calctolate 

their relative teniperatxires if we know their temperatures when the shock 

traversed them, and assume adiabatic expansion from there on. 

A material element which is initially at point r will be shocked 

when the shock radius is r. The shock pressure at this time is* 

Pg(r) = 20(7^^ - l)Yr"5 (3.2) 

where 

Y = yield in megatons 

r = radius in kilometers 

y. _ 1 ^ P ^ pressure , . 
pE energy per \mit volime 

*Notations for thermodynamic quantities similar to those of Gilmore 
(Report RM-I5I+3). 
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and the average of 7' is taken over the volxmie inside the shock wave. 

The basis of (3.2) is that the total energy in the shocked volimie, Y, 

is the volimie times the average energy per unit volimie, the latter is 

the average pressure divided by 7' - 1, and the average pressure is 

close to one-half of the shock pressinre. 

The density at the shock is 

7g + 1 2 

Ps = 7 r T T P o " 7 r T T P o 5̂.̂ )̂ 
s 's 

where the subscript s refers to shock conditions. Now an examination of 

13 

Gilmore's tables shows that 7' does not change very much along an adi-

abat. As an example, we list in Table II certain quantities referring 

to some adiabats which will be particularly important for our theory. 

These are the adiabats for which the temperatin'e T is between ii-000 and 

12,000 at a density of O.lp-. In the second line we list the temper

ature T for the same entropy S at a density p = lOp . This is close 
S S \J 

enoijgh to the shock density (3.^) so we may consider T as the temper-

ature of the same material when the shock wave went through it. (Adia

batic expansion, i.e., no radiation transport, is assimied.) The third 

line gives 7' - 1 for the "present" conditions, p = O.lpQ and T, the 

fourth line is the same quantity for the shock conditions. It is evident 

that 7' - 1 is nearly constant for T = t̂-OOO and 60OO , not so constant 

for 8000 and 12,000°. On the average 7' - 1 « O.I8. The last two lines 

in Table II give the number of particles (atoms, ions, electrons) per 

original air molecule under "present" and shock conditions. 

20 



Table II. Adiabats 

("Present" density, O.lp ; shock density, lOp ) \ -̂  J 

T 

T 
s 

7 ' - 1 

K-^ 
Z 

Z 

L v-i-fN^xx w vAv.'i.xk-'a 

J+,000 

9,000 

0.213 

0.208 

1.13 

1.3 

-"J } ^ - - ^ H Q ^ " • ' 

6,000 

10,500 

0.19H 

0.190 

1.27 

1.6 

• . ^ ^ - i > . '^^x^^j.ytj , 

8,000 

18,000 

O . l H 

0.190 

1.68 

2.o6 

•""••^0' 

12,000 

28,000 

0.153 

0.20 

2.06 

5 

Assuming an adiabat of constant 7=7*, the density of a mass 

element is 

'-"ivf <'-5' si 

Now p is a constant, and at any given time, p is the same for mi mass 

elements except those very close to the shock, hence 

P-Pg"^/'' (5.6) 

(~ means proportional to). 

If we now introduce the abbreviation 

m = r^ (3.7) 

which is proportional to the mass inside the mass element considered, 

and if we lise (3-2), we find that at any given time 
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1/7 p ~ m ' (3.8) 

The radius R is given by 

3 
R- = [ ^ ~ j - ^ = in2LzJ.. const. (3-9) 

We shall set the constant equal to zero which amo-unts to the (incorrect) 

assimiption that (3»8) holds down to m = 0. Acttially, the isothermal 

sphere gives the constant a finite, positive value. 

To find the temperature distribution, we note that the enthalpy 

,1 
H = 1̂  ., ^ (5.10) 

7 - 1 P 

We are using the enthalpy rather than the internal energy because the 

interior of the shock is at constant pressure, not constant density. 

The thermodynamic equation for H is 

T dS = dH - V dp (5.11) 

At given pressure, i.e., given time, (5.8) to (3.10) give 
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Now the approximate relation between internal energy and teniperature is 

13 given by Gilmore, Fig. 5, viz,,* 

E = k.2^ X lO-'-'- (^\ T'1-5 erg/gm (3.15) 
•5 

k 
where T' is the temperature in units of 10 degrees. 

Using p = -ir/yt _1 ] from (5*5) and setting 7' = I.I8, which is a reasonable 

average (see Table II) we may rewrite (5«15): 

E = 7.0 X 10-"-̂  p"-"-/̂  T'^/^ (3.1̂ +) 

where p is the pressure in bars. Since H is proportional to E, (3.12) 

and (3.1^) give 

T ~ H5/5 ~ R-l-8/(r-l) ̂  R ^ (3.15) 

Using 7' - 1 = 0.18, which is not far from the average of Table II, 

* ^ e thermodynamic relation 

l)-(^)- P 

T ' 'v 

leads to a relation between 7 - 1 and the exponents in the relation 

E = Ap'^ T^ 

namely, 

X = (7 - 1) (y - 1) 

Since we have chosen 7 = I.18 and y = 1.5 this relation gives x = 0.09. 
This is in sufficient agreement with x = 0.1 as used in (3.13). 
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T ~ R"^° (3.16) 

8 
The numerical calculations of Erode are in good agreement with this at 

the relevant times, from about 0.05 to 0.5 second. 

It will be noted that (3.16) was obtained withottt integration of 

the hydrodynamic equations; it follows simply from the equation of state. 

The weakest assumptions are (l) the relation between E and T, (3»13); and 

(2) the neglect of the constant in (5«9)« But in any case, T will be a 

very high power of R. 

c. Mean Free Path and Radiating Temperature 

The emission of radiation from a sphere of variable temperature is 

governed by the absorption coefficient. For visible light, the absorption 

coefficient increases rapidly with temperature. For any given wave 

length, the emission will then come from a layer which is one optical 

mean free path inside the hot material.* 

Actually the maximum emission comes from deeper inside the fireball. 
To see this we compute the emission normal to the siorface, J = 

/dr£(R)e dR where C = -^— e~ ' is the emissivity, and the remain 
c -t 

ing notation is as in the text (below). The integrand has a maximum at 
RV-t* = na + Ohv/kT*. The optical depth at the maximum is D* = D(R*) = 

wc + oaiv/KT* 
—— which i s about 2, ra ther than 1 in the b lue . By steepest 

not - 1 ' 
descents and with occasional use of l/nOt = 0 i t t irms ottt tha t J = 

—— J l + r~3f B ( V , T * ) , grea ter by about a factor 2 than the J used in 

the t e x t . 
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Assume that the mean free path is 

.'-n I = l^T -"^ (3.17) 

where the exponent n and the coefficient -t depend on the wave length. 

Then the optical depth for a given R is 

D(R) = I TT&TT (3.18) 1 
R 

Using (3.15) and (5.17), 

00 

R 

^mrj \f) dR 
in I 

R 

•R 

= (iC - 1) l(R) (5.19) 

A typical value of n is 5 [cf. (5•52)], and a is 10 or somevhat larger. 

Thus to make 

D(R) = 1 (5.20) 

we need 
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-t.(R) « 5 ^ R (3.21) 

Since the interesting values of R are of the order of a few hundred 

meters, the emitting layer will be defined by the fact that the mean 

free path is about 5 to 10 meters. 

Equations (5«l8) to (3«2l) hold for emission in the exactly radial 

direction. At an angle 9 with the radius we get instead 

t(R,e) = 3 (5.22) 

The apparent temperature of the emitting layer is then, according to 

(3.17), 

T(R,e) = T(R,0) (cos 6)^/^ (5.25) 

where T(R,0) is the emission temperature for forward emission. The 

intensity of emission is a known (Planck) function of the wave length 

and the temperature. Since the apparent temperature decreases (thoijgh 

slowly) with 9, according to (5-25) there will be limb darkening. On 

the many photographs of atomic explosions, it should be possible to 

observe this limb darkening and thus check the value of n. 

The relation (3.17) needs to hold only in the neighborhood of the 

value (3.21) of ^ and is therefore quite general as long as t decreases 

with increasing temperatvire. The exponent n should be determined at 

constant pressure. For certain wave lengths, especially in the ultra-
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violet, (5.17) is not valid; these wave lengths are strongly absorbed by 

cold or cool air (Sec. 4c). For exaraple, at p = p. and T = 2000 , the 

mean free path is less than 1 meter for all light of hv > k-.J ev 

(X. < 0.26 p.). Since the emission of light of such short wave length from 

such cool air is negligible, the fireball will not emit such radiation at 

all. 

A detailed discussion of the absorption coefficient in the visible 

will be given in Sec. kh- As can be seen from the tables of Meyerott 

et al. and from our Table VI, for a density p = p^ the mean free path 

is of the order of 5 meters at about 6000 . This corresponds to a pres-

13 stire of about 25 bars. For p = 0.1p_ the requisite mean free path of 

a few meters is obtained for aboirt 10,000°, with p «< 7 bars. Thus for a 

relatively modest decrease in pressure, the effective teraperat\ire of 

radiation increases from 60OO to 10,000 , corresponding to a very sub

stantial increase in radiation intensity. This is the mechanism of the 

increase in radiation toward the second maximum. A more detailed dis

cussion will be given in Sec. 5f• 

d. Energy Siipply 

As long as the radiating temperature is low, not much energy will 

be emitted as radiation, and this emission will only slightly modify the 

cooling of the material due to adiabatic expansion. However, when the 

radiating temperature increases, the radiation cooling will exceed the 

adiabatic cooling to an increasing extent. It then becomes necessary to 

supply energy from the interior to the radiating surface. 
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Most of the radiation comes from a thickness of one optical mean 

free path near the radius at which (5.21) is satisfied. Let J be the 

radiation emitted per unit area per second (which will be of the order 

of the black body radiation; see below and Sec. kc); then the loss of 

enthalpy due to radiation, per gram per second, will be 

- ( I ) -^ <'-" 
^ 'rad 

Adiabatic expansion, according to (5.11), will give an enthalpy change 

(I) =^l ('•«' 
^ 'adi 

As long as the shock is strong, i.e., as long as p is large compared to 

the ambient pressure p.̂ , the pressure behaves as 

P~t-=^-2 (5.26) 

where t is the time from the explosion; therefore. 

(s) - —- f (5.27) 
P t 

adi 

The radiation will be a relatively small perturbation as long as 

,5.2'i-) is smaller than (5*27)« Thjs will stop being the case when 

J =1.2 I (5.28) 

Now using (5«2l) this gives 
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ij^ P I . J (3.29) 

Because of the steep dependence of temperature on R, (5.l6), the radi

ating surface R will be close to the shock front R . Now the Hugoniot 
s 

relations state that for y close to 1 

where p., is the ambient density and p = 2p, the shock pressxxre. Further-
X s 

more, for the strong shock case, 

4.0.4 R ~ t s 

R 

4- = 2.5 K (5.31) 

Inserting into (3.29), 

0.06 J2 p^/^ = J p^^/^ (5.52) 

The black body radiation at temperature 10 T is 

JQ = 5.7 >̂  lO-"-"̂  T'^ erg/cm^ sec (3.55) 

Actually, only the radiation up to about hv^ = 2.75 ev can be emitted to 

large distances because the absorption is too great for radiation of 
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higher frequency (above, and Sec, Uc). The fraction of the black body 

spectrum which can be emitted is given, in sufficient approximation, by 

^̂ 0 

e = ̂ J u 5 d u e - = l - e " ° ( l . u ^ 4 u ^ . ^ u ^ j (5-34) 

where 

\ = wr • ^5.35) 

For T = 8000 , we have u^ = 4 and the effective emissivity is then 

£(4) = 0.57 (3.56) 

In (5.54) we have neglected the fact that the infrared, below about 

1/2 ev, also cannot be emitted (Sec 4a), and have approximated (e - l) 

in the Planck spectrum by e~ ; both corrections are small. T_ = 8000 

has been chosen as a reasonable average temperat\ire (see Sec. 5). Near 

-1.5 this temperatinre, S varies about as T~ , so that the actual radiation 

to large distances is about 

5.7 X lO"'̂  T^^ £(4) (e 
= 2.5 >̂  IO^^T'^-5 (3^5^) 

Solving (5.52) for p, with p,̂  = 1.29 ^ 10 (normal air density) gives 
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p = 20(-i) T'5/^ bar (5.38) 
ft) -

For p = p , T = 0.8, this is l4 bars. 

At higher temperature (T -̂  l), the ultraviolet can be transported 

as easily as the visible although it will not escape to large distances 

(Sec. 4c). Then it is reasonable to use the full black body radiation 

(5.55) for the emission. Inserting this into (5.32) gives 

1/3 

p =40(-i ) T'^/5 (5.59) 
ft) ' • 

For p = p , T' = 1.0, this is 40 bars. 

Thus for p greater than l4 to 40 bars, the radiation is only a 

fraction of the adiabatic cooling, for lower pressure radiation cooling 

is more inrportant. At the lower pressures then, energy miost be supplied 

from the inside to maintain the radiation. This gives rise to a "cooling 

wave" moving inwards as will be discussed in Sec. 5. 

It is interesting that the condition (3.38) refers to the pressure 

alone. Neither the local density nor the equation of state enters. The 

opacity of air enters only insofar as it determines the radiating temper

ature T' through the condition (3.21). 

A more accurate expression for the limiting pressure will be derived 

in Sec. 5e. It will turn out to be considerably lower, about 5 bars. 
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4. ABSORPTION COEFFICIENTS 

a. Infrared 

The main absorption in the infrared is due to free-free electron 

transitions. These are treated incorrectly in the paper by Meyerott et 

al., in which it is assumed that such transitions occur only in the 

field of ions. At the inrportant temperatures of 80OO or less, the degree 

-3 
of ionization is 10 or less. Therefore, the free-free transitions in 

the field of neutral atoms and molecxoles are much more important than 

those in the field of ions, even though each individual atom contributes 

far less than each ion. 

The effectiveness of neutrals in inducing free-free transitions has 

1 ft 
been measiu'ed and interpreted by Taylor and Kivel at the Avco-Everett 

laboratory. As compared to one ion, the effectiveness of the most Impor

tant neutral species is 

N^: 2.2 ± 0.5 X 10"^ 

N: 0.9 ± 0.4 X 10"^ 

0: 0.2 ± 0.3 ^ 10"^ 

Thus nitrogen gives about the same contribution whether molecular or 

atomic, and the contribution of oxygen is very small. As a result, one 

atom of air is equivalent to about Q£ = 0.8 X 10 ion (of unit charge). 

The free-free absorption coefficient in cm is then 

n^^ = 0.87 X lo^cff'-l/^ /B_\ ̂ (e-)(hv)-5 

= 7.0T'-1/2 /e_\^(e-)(hv)-5 (4.1) 
fe) 
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where e" is the number of electrons per air atom, the quantity tabulated 

13 in Gilmore, and hv is the quantum energy in ev. Table III gives some 

numbers for hv = 1 ev, four temperatures and three densities. At 80OO , 

the free-free absorption is substantial, at lower temperatures negligible. 

At 12,000 the transitions are mostly in the field of ions, i.e., 

Meyerott's numbers need only slight correction, and the absorption is 

large. 

Table III. Free-Free Absolution Coefficients (cm~ ) 
for hv = 1 ev 

T 

4,000 

6,000 

8,000 

12,000 

P/PO = 1 

6.8-6 

5.5-^ 

4.1-5 

2.1-1 

0.1 

1.9-'^ 

1.05"5 

8.7-5 

1.50-^ 

0.01 

4.1-9 

1.9--̂  

2.4-6 

1.12'^ 

Note: for each value, the power of 10 is indicated by a superscript. 

Another cause of absorption in the infrared is the vibrational bands 

24 -5 / 
of NO, which have an oscillator strength of abo\it 10 and hv = 1/4 ev. 

The resulting absorption coefficient is about 

M^ = 0.2 e_ (NO) (4.2) 

where (NO) is the nimiber of NO molecules per air atom. This is a few-

percent at p/p = 1 and T = 4000 to 8000°, giving |a = 2 X lo"^ to lO" 

cm . While this is of the order of magnitude relevant for emission. 
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(5.21), it is small compared to the free-free absorption at this low 

frequency, except at T < 5000 . Its main effect is therefore to lower 

the radiating temperatiire in the infrared somewhat. 

Since the free-free transitions are the main cause of infrared 

absorption, the electron density governs the temperat\xre and density 

dependence. For p/p̂ . ̂  lO" and T ^ 80OO , the main species of positive 

ions is NO . The ionization energy of NO is 9*25 ev; therefore, the 

electron density is roughly proportional to 

p5/2 exp (- 2lf:i;^ ) (4.5) / 9.25 ev\ 
exp y- 2kr ) 

From 6000 to 80OO , this gives a factor of about 10 in the electron 

density, in accord with Gilmore's tables. Near 80OO , we may write 

approximately 

l̂ ff ~ (e") ~p^/^ T'̂  (4.4) 

-1.5 Writing p ~ pT * , t h i s gives 

^ f f - p ^ / ^ T ^ (4.5) 

The temperature dependence of the absorption in the v i s ib l e w i l l tiom 

out about the samie. 

b . Visible 

In the v i s i b l e and for temperattires below about 10,000 , the main 
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causes of absorption are the molecular bands of 

Np (first positive) from about 1 to 2-1/̂ 4 ev 

Ng (first negative) " " 2-l/2 to 5-5/4 ev 

NO O bands) " " 2-l/2 to 6 ev 

and the continuous absorption due to 0~ photodetachment from about l-l/2 

ev up. The N^ second positive, and 0„ Schumann-Runge, although they con-

tribute, are usually weaker than the combination of N_ first negative and 

NO and cover the same region of the spectmm (or less). O" photodetach

ment is mostly important at the higher density, p/p̂ , = !• 

There is commonly a "window" of low absorption below 1 ev, between 

free-free absorption and N (l ), and another at about 2-l/2 ev, between 

Np and the other bands (Table IV). The latter window is filled in by 0~ 

photodetachment. At higher temperature, such as 12,000 , the photoelectric 

effect on N and 0 becomes inrportant and the molecular bands almost dis

appear; the absorption coefficient is then almost uniform over the entire 

spectrum. 

The table by Meyerott et al. shoiild be consiiLted for details. Apart 

from the free-free transitions, this table seems to be in error on the 

Ng(l"*") absorption at 8000 , which should be increased by a factor of 4. 

With these corrections, Table IV gives the absorption coefficients at 

8000 for a few frequencies and densities, mentioning in each case only 

the most important species of absorbers. For p/p,-, = 0.1 and 0.01, the 

contribution of NO and Op in the wave length region considered is negli

gible. The windows at 1 and above 2 ev are noticeable in the table; beyond 

5 ev there is a rapid increase in absorption. 
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Table IV. Contributions to Absorption Coefficients at 8000° 

hv (ev) 5/8 1-1/8 1-5/8 2 - l / 8 2-5/8 3 - l /8 

P/Po = 1 

ff 

^2 

0-

NO, Ng, Og 

Total 

P/PQ = 0.1 

ff 

^2 

Q-

< 

Total 

p/pg = 0.01 

1.7-= 

1.7-= 

0.3S-' 

O.36-' 

0.3-= 

1.1-= 

1.1.-= 

0.06"̂  

0.61-5 

o.67"5 

0.10"^ 

2.1-= 

_2 
0.21 

2.k-^ 

0.02-5 

1.12-5 

0.05"5 

1.2-5 

0.04"^ 

0.84"^ 

0.28-^ 

1.16-2 

0.01-5 

0.î 6-5 

0.06-5 

0.55"5 

0.02"2 

0.04"2 

0.51 
_2 

0.51 

0.68"̂  

0.02"5 

0.07"^ 

0.55"5 

0.64-5 

o.oi"2 

0.56-2 
_2 

0.32 

2.2-2 

5.1-^ 

0.50-5 

0.07"5 

4.2"5 

4.6-5 

ff 1.0-5 0.17"^ 0.05-5 0.02"5 0.0l"5 0.01-5 

Ng 1.59"^ 2.6-5 1.05-5 0.05"^ 

0" 0.13"^ 0.17"^ 0.2-5 Q^2-5 

Ng 0.03"^ 4.4-5 51 -̂5 

Total 1.0-5 3_^5-5 2.8"5 1.25"^ 4.7"^ 34"^ 
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The concentration of all the absorbing species depends strongly on 

temperature: T?he Np first positive absorption starts from the electronic 

level A, which has an excitation energy of 5.7 ev; NO itself requires 

+ _ 

high temperattire for its formation; and Np and 0 are ions whose concen

tration behaves like the electron concentration, discussed above in 

Sec. 4a. Therefore, the absorption depends strongly on temperature. Np 

first positive is the most important absorber, and its temperatizre depend

ence (relative to the ground state of Np) is about 

exp 
/ 5-7 ev\ (4.6) 

The concentration of Np vcp to 6000 is nearly independent of density. 

^o _ _. ^ . . ._ . . , ^ . 1/2 but at 8000 i t i s about proportional to p (per a i r atom) so tha t near 

8000° 

Hjj - P 5 / 2 T 8 (i^^^) 

which is nearly the same dependence as derived in (4.4) for the free-free 

transitions. In terms of pressure we get 

n^ ~p5/2T^ (1,.8) 
2 

Table V gives the absorption coefficients for four temperatures, 

three densities, and six wave lengths. In the visible (I-I/8 to 2-5/8 ev) 

the strong increase in absorption with tenrperattire is evident, a factor 
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Table V. Absorption Coefficients in Visible (cm- ) 

P/P, 

0.1 

0.01 

T 

4,000 

6,000 

8,000 

4,000 

6,000 

8,000 

12,000 

4,000 

6,000 

8,000 

12,000 

hv = 5/8 

27-^ 

2 . 3 - ' 

1.7-= 

7 .8-^ 

H.3-5 

3.6-" 

6.1-= 

1.7-« 

0.8-^ 

1.0-5 

i,.6-5 

1-1/8 

7.5-^ 

1.10-5 

1.^-= 

k.z'"^ 

7.6-5 

6 . 7 - " 

1.2-= 

3.3-' 

5.7-^ 

1.6-5 

o.w' 

1-5/8 

5 . 3 ^ 

2.1-5 

2.4-= 

k.2-'^ 

13.7-5 

12-" 

1.5-^ 

.. .0-8 

10.3-^ 

2.8-5 

1.50-5 

2-1/8 

1.5-^ 

1.53-5 

1.16-= 

1.05-'' 

7.5-5 

5 . 3 - " 

0.84-2 

O.9O-® 

4.8-^ 

1.25"^ 

0.72-5 

2-5/8 

52-^ 

1.66-5 

0.68-2 

55-^ 

4.8-5 

6.4-^ 

0.85-2 

16-^ 

2.8-6 

4.7"^ 

0.68-5 

5-1/8 

8900"^ 

11-5 

5 .1 -^ 

r 

4lOO" 

26-5 

W-" 

1.1(2-' 

900-8 

25-« 

3^-5 

0 . 9 1 ' 



of about 200 from 4000 to 6000°, about 10 from 600O to 8000° except for 

the lowest density, and 10 to 50 from 8000 to 12,000 . In most cases, 

the dependence on wave length is slight until the rapid increase of 

absorption in the ultraviolet which sets in at about 2.5 ev for 4000 , 

5 ev at 6000 and 80OO , and not at all at 12,000 . The especially strong 

increase for 4000 is due to the Schumann-Runge bands, which are not very 

sensitive to temperatxire ' (see Sec. 4c). 

In Sec. 5d we shall need the mean free path in gm/cm , suitably 

averaged over the "transparent" region. From Table V it appears that a 

reasonable estimate of this region is from hv = l/2 to 2-5/4 ev. We 

have averaged p/p. as calculated from Table V, with the weighting factor 

5 -u k X 8000° 
u e , u = hv 

(4.9) 

which does not vary much (from 0.84 to 1.55) between I-I/8 and 2-5/8 ev. 

The resTolt is given in Table VI. 

After ccnrpletion of this paper, I received new absorption coefficients 
by F. R. Gilmore, cf. ref. 25. Aside from including the absorption by 
NO2 (see Sec. 4a), Gilmore includes the free-free absorption in the 
field of neutrals, based on ref. 18, and also new data on f numbers for 
the ijnportant bands,^^ The most inrportant change is a reduction in the 
f number of the Ng first positive system from 0.02 to 0.0028, which will 
substantially reduce the absorption in the visible. Unfortunately, this 
will further raise the theoretical radiating temperature (Sec. 5cL), 
which is already higher than observed. 

+ 
Some recent Avco-Everett experiments may indicate that the free-free 
electron transitions in the field of the N atom are enhanced in the 
visible as compared to the infrared. This may compensate to some extent 
for the reduction of the Np first positive bands (see footnote above). 
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Table VI. Average Mean Free Paths (gm/cm ) 

T 

6,000 

8,000 

12,000 

P/PO = 1 

0.86 

0.105 

0.1 

1.34 

0.20 

1.25-= 

0.01 

3.15 

0.76 

1.82-2 

A fair approximation to Table VI is 

a=2.7xio-2 /e . \ - ° -5T' -T (i,.io) 

Gilmore's equation of state can be approximated near T = 1 , p/Pf̂  = 0.1 

by 

p = 55(^e^^°-%'5/2 (,.,,) 

Using this in (4.10) gives 

H. = 0.10 p-^/5 rp'-6.5 gj^/^2 ^^^^^ 

c. Ultraviolet 

The absorption in the \altraviolet is generally high at all tempera

tures. At low tenrperatures, the absorption is mainly due to the Schumann-

Rimge bands; at higher teniperature (80OO ) these are replaced by NO 3 and 

7, and at high temperature (12,000 ) by photoelectric absorption in 0 , 
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N, and 0. The Schumann-Runge bands start from the electronic ground state 

of Op, hence are available at low T; at higher T, the spectral region of 

strong absorption spreads due to excitation of vibrational states; but at 

still higher T, oxygen dissociates and therefore the bands die out (at 

8000°, they contribute less than 10^ of the absorption). The photo

electric absorption in N and 0 reqvdres not only the presence of these 

atoms bxit also their electronic excitation, and therefore does not become 

inrportant tmtil about 10,000 . 

Table VII gives, for density p = O.lp , the spectral regions of 

strong absorption. In accord with Sec. 5b, we define this by |J. > 10~ 

(mean free path less than 10 meters) or n > 10" (-t. < 1 meter). The 

table shows that strong absorption covers a particularly wide spectral 

region at 4000 , shrinking substantially at 60OO . Very strong absorption, 

\x > 10" cm" , occurs in quite a large specrtral region for T = 4000 but 

shrinks to practically nothing at 60OO and to nothing at 80OO . At 

12,000 , very strong absorption occurs again but is now in the visible. 

The strong absorption in the ultraviolet (hv > 3«5 ev) means first 

of all that the UV is not emitted to large distances and can therefore 

not be observed; e.g., at T = 4000 and hv = 3»5 ev, we have 

u = i^ = 10 

T̂ e should also add the photoelectric absorption from excited states of 
NO, which sho-uld be especially noticeable at 8000°. 
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The fraction of the Planck spectnm beyond u = 10 is only about I'fi, so 

that emission of these frequencies is negligible. 

Table VII. Ultraviolet Absorption: Spectral Regions (hv in ev) with 
Large Absorption as a Pvmction of Temperature for p = O.lp, 

T 

2,000 

3,000 

4,000 

6,000 

8,000 

12,000 

11 > 10-5 ^-1 

4.7 - 7.2 

5.9 - 7.2 

3.5 - 7.2 

4.0 - 7.1 

2.7 - 6.5 

All 

>. -,̂ -2 -1 |i > 10 cm 

5.5 - 7.2 

4.7 - 7.2 

4.6 - 7.2 

5.8 - 6.0 

None 

2.7 - 3.5 

The ultraviolet can, however, be transported quite easily at 8000 

and even more easily at 12,000 if there is a temperature gradient. Such 

a gradient is always available, whether we have adiabatic conditions 

(Sees. 5b, 5f) or a strong cooling wave (Sec. 5<3.). Therefore, there will 

be a flcjw of ultraviolet radiation at the radiating temperature, defined 

in Sec. 5, which will be shown (Sees, 5d, 5f) to be about 10,000° or 

slightly less. To calculate this flow, we should determine the tempera

ture gradient from considerations such as Sec. 53. or 5f, and then insert 

this into the radiation flow equation. This is similar to (5.3) except 

that only the tjltraviolet contribution to the flow should be taken into 

account. 
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When this is done in a case of constant (frequency-independent) 

absorption coefficient, the ultraviolet transport will be related to the 

visible radiation transport as the respective intensities in the Planck 

spectrum. This condition seems to be nearly fulfilled at 12,000°. At 

8000 , the absorption in the near ultraviolet (2.75 to 4.2 ev) is about 

three times that in the visible; then the UV transport will be one-third 

of that corresponding to the Planck intensity. Since the radiating 

teniperature near the second radiation maximum is between 80OO to 10,000°, 

the actual UV transport will be between one-third and the full Planck 

value, relative to the visible radiation. According to (5.56), the UV 

contains about 45^ of the Planck intensity at 800O ; hence the total 

radiation transport at this tenrperatirre is about 

57 + 1/5 X 45 = 71^ 

of the black body radiation. At 12,000 we get the f\ill black body value. 

For simplicity we have assumed the full black body radiation in Sec. 5> 

even though the UV is not emitted to large distances. Bttt this problem 

could, and should, be treated more accnirately. 

Having discussed the influence of the UV on the total radiation flow, 

we now examine what happens to the UV radiation after it has gone throxigh 

the "radiating layer," i.e., the layer which emits the visible light to 

large distances. The veiy near tiltraviolet, 2.75 to 5*5 ev, will be 

partially absorbed at 4000 to 60OO , especially if the layer of matter 

at these intermediate teraperattires becomes thick, 0.5 to O.5 gm/cm or so. 
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The UV beyond 5.5 ev will be strongly absorbed at 4000°. Thus the layers 

of air at intermediate temperatures get additional heat which counteracts 

and may even exceed the adiabatic cooling. This will tend to increase 

the thickness of the medium-temperature layer. This in tvan will (mod

erately) lower the radiating teniperature, but three-dimensional effects 

act the opposite way (Sec. 6). 

5. THE COOLING WAVE 

a. Theory of Zel'dovich et al. 

Zel'dovich, Kompaneets, and Raizer (quoted as Z) have considered 

the loss of radiation by hot material when the absorption coefficient 

for the radiation increases monotonically with temperature. They have 

shewn that in this case a cooling wave proceeds into the hot material 

from the oiitside. This is to say, the cool temperature oiitside gradually 

eats its way into the hot material, while the material in the center 

remains xaoaffected and merely expands adiabatically. 

For simplicity, Zel'dovich et al. consider a one-dimensional case. 

They further assiime that the specific heat is constant and express their 

theory in terms of the temperature. This is not necessary; we shall 

merely assume that both the enthalpy H and the absorption coefficient 

for radiation are arbitrary bxrt monotonically increasing functions of the 

temperature. Like Z, we shall assume, in this subsection only, that the 

radiation transport can be described by an opacity (Rosseland mean) rather 

than considering each wave length separately. 
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The fundamental statement of Z is that the cooling wave keeps its 

shape, i.e., that the enthalpy (and other functions of the temperature) 

is given by 

H = H(x -I- ut) (5.1) 

Here t is the time, x is the Lagrangian coordinate, and u is the 

Lagrangian velocity of the cooling wave. We have written x + \it so that 

the cooling wave proceeds towards smaller x, i.e., inweurds. H is, of 

course, a decreasing fxmction of x + ut. The Lagrangian coordinate is 
o 

best measured in gm/cm and is defined by 

•I P <3X (5.2) 

where X is the geometrical (Eulerian) coordinate. For given pressure p, 

the density p is a function of H so that X(x) can be calculated frcM 

(5.2). The Lagrangian velocity u, meas\u:ed in gm/cm sec, is a constant. 

For any given H, we know the teniperat\u*e T, hence the opacity K and 

the radiation flow 

4 a 9(T ) 

•̂  = - 5K(Ty-55r- ^5.5) 

where a is the Stefan-Boltzmann constant, 

- 5 / 2 4 
a = 5'7 X 10 erg/cm sec deg 
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The equation of continuity is 

9H aj 
St = - S? (5.^) 

The energy in radiation has been neglected, which is justified in 

all practical cases. Using (5.1), (5.4) can be integrated over x to 

give 

uH + J = C (5.5) 

where C is a constant. This is the fxmdamental result of Z. 

If the opacity increases monotonically with H, then in the interior 

J will be very nearly zero, and therefore 

C = UHQ (5.6) 

where H. is the enthalpy in the undisturbed interior, hot region. 

Equation (5.5) becomes 

J = U(HQ - H) (5.7) 

and using (5.5) 

4 d(T^) 
^'--5^K(T,p)(Hp-H) ^5.8) 

which can be integrated to give x(T), since H(T) and K(T,p) are known 

ftinctions. We have put in evidence the fact that K depends on pressiire 

in addition to T. Over most of the range of T, K(T) is the most rapidly 
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varying (increasing) fimction of T and the variation of H - H is less 

important; therefore, T(x) becomes steeper as T increases; but when H 

gets very close to H , the most rapidly varying function in (5.8) is 

H - H, and H approaches H exponentially as e for small x. The qual

itative behavior of T(x) is shown in Fig. 1, in accord with Z. To obtain 

this shape it is essential that K(T) increase much faster than T . 

Ho 

Fig. 1. Teniperature distribution in cooling wave. 

On the outside, we finally come to a point x^ where only one optical 

mean free path is outside x . From this point we get black body emission, 

i.e., (5.5) is replaced by 

J(x^) = j^ = arj (5.9) 

Using this in (5.7) ve find 
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J, 
^ = HQ - H(T^) ^5.10) 

To determine u we therefore have to proceed as follows: 

1. Find the teraperatTore T. at which the opacity K(T. ) is such that there 

is one optical mean free path outside x , i.e., 

^1 

K(T) dic(T) = 1 (5.11) 

0 

For this ptirpose we miost know, of course, the temperature distribution 

T(x) for T < T . 

2. Detennine J(T.) from (5.9) and H(T ) from the equation of state. 

Knowing the internal enthalpy H then gives u from (5.10). Note 

that u is the Lagrangian velocity of the cooling wave. It has the cor

rect dimension. 

To solve problem 1, Z assume that the material which has gone through 

the cooling wave will expand adiabatically. We shall find that this is a 

reasonable assumption in most conditions (Sec. 5<3.) but that at early times 

(Sec. 5f) and in certain late stages other considerations apply (Sec. 6b). 

b. Inside Structure of Fireball, Blocking Layer 

In early stages (Stage B l), jxxst after the shock wave is formed, 

the isothermal sphere expands, by radiation diffusion, into the material 

which has been heated by shock. This process, which will be treated in 

a sijbsequent report, depends on the teniperature and temperature gradient 
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in the isothermal sphere. For its occurrence it is important that the 

opacity actiially decreases with increasing T at higher tenrperatiire. Many 

calctilations of K(T) in this temperatiire region have been made. Ciirves 

21 

have been compiled, especially by Gilmore, and revised as more infor

mation has become available. The most recent and most extensive calcu-

22 
lation, to my knowledge, is by Stiiart and Pyatt. 

All calctilations agree that T /K(T), which is the Important quantity 

according to (5•3), has a pronounced minimum at about T' = 2, T = 20,000 . 

(The temperature of the miniin\m increases slightly with increasing den

sity.) Molecules are no longer present at these tenrperatirres, and 

absorption Is mainly by bound-free electron transitions in atoms and 

atomic ions, with some contribution from broadened atomic lines (bound-

bound transitions) whose calculation is the most difficult. Radiation 

transport, then, is most difficult around T, = 20,000°, and temperatures 

aroimd T, constitirte an effective blocking layer for radiation. 

Ifetll about 0.5 second, the central temperatxire of a 1-megaton sea 

level explosion is greater than T , according to the calcxilations of 

8 
Erode. Radiation flow can then be considered as taking place separately 

in an interior and an exterior region. The interior flow is determined 

by the central temperature T , and this flow generally decreases with 
•z 

time because T decreases and with it the quantity T /K. The exterior 

flow is dominated by the cooling wave and increases with time because 

the decrease of density causes a decrease of opacity for any given T. 

The two flow regions are separated by a blocking layer in which the 

h9 



teraperatiire is aro\znd T, , and in which the teraperatiire distribution is 

essentially that original 1y established by shock and subsequent adiabatic 

expansion. I t i s to th is condition that the temperature distribution 

(5.16), T'-R"-'-^, refers. 

The radiation flow through the blocking layer is 

-. = - ^ ^ ^ ^ " 1 ^ < 5 - ^ ' 

The mean free path for radiation in the blocking layer (at l8,000 ) 

21 
according to Gllmore is about 

-1.5 
\ = 0.8l^\ cm (5.15) -°-'{k) 

The radius R. at which this temperature occurs, for a 1-megaton explosion 

at sea level, is R, = 300 to 1+00 meters. Using T ~ R" , this gives 

-1 3 

This Is equivalent to black body emission at the effective temperature 

,-0.325 
^eff ,b = 5300 f ̂  ^ (5.15) 

Using the equation of state at l8,000 , 
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'o ̂  W) 
1.1 

(5.16) 

where p is In bars. Equation (5»15) becomes 

^eff,b = ̂ °'°°° P"°'^ ^5.17) 

The "blocking layer" will deserve Its name only if the radiating temper

ature is higher than T „„ , . 

c. Velocity of Cooling Wave 

The velocity of the cooling wave is given by (5.10), where IL Is 

the enthalpy at the point to which the cooling wave has proceeded. If 

inside this point there is a noticeable flow of radiation, J-, (5'10) 

should be generalized to 

Usxially, the main dependence on the internal conditions is through H-, 

the effect of J_ being less important. 

As H- increases. I.e., as the wave progresses more into the interior, 

the velocity of the wave will decrease. The limit will be reached when 

the cooling wave penetrates the Isotheimal sphere; then H^ is the enthalpy 

In that sphere and J- = 0» We now tise the black body formula (3'33) for 

the emission of radiation at the radiating surface T-, (3»1^) for the 
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internal energy in the isothermal sphere of temperature T and 7' = 1.15 

in that sphere; then (5'lS) becomes 

5.7 X 10-^ T^^ 
u = c 8.2 X 101^-1/9 (T.5/3 . .5/3) 

c 1 

= 0.70 p ' "7575 5̂75 gm/cm sec (5-19) 

c ~ 1 

Typically, p = 5, T' = 1, T = 3 ; then u = 0.15 gm/cm sec. The expres

sion (3«33) incliodes all the black body radiation. If only the radiation 

actually emitted to large distances is to be included (which is reasonable 

at lower temperat\ires, T < 0.8) (3»57) should be used; then u will be 

smaller, 0.1 gm/cm sec or less. 

Before the cooling wave reaches the isothermal sphere, H_̂  is smaller. 

This is partly compensated by the fact that J > 0. An interesting inter

mediate state is when the cooling wave has just reached the blocking 

layer. Then, using T = 1.8 and (5.1^), 

(5.20) 
• ^ 1 -

\ -

0.70 

Jb 

h 

/ / ' 
^t-

2 .7 

15 p 

m'5/3 
" ^1 

(5.21) 

Clearly this makes sense only if the subtracted term in the numerator is 
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smaller than the first term, i.e., when the pressvire is s\afficiently 

high. As the pressure decreases below about 10 bars, the blocking layer 

"opens up" and ceases to block the flow of radiation. 

In the very beginning, when the cooling wave just starts, the top 

temperat\jre of the cooling wave, T , is close to the radiating tempera

ture T . Then (5»l8) becomes 

\ (il (5.22) 

If we use (5.12) for J, assume d log T/d log R and R to be constant, and 

use (3.1U), then 

For f\irther discussion, see Sec. 5f • 

As T increases, u decreases from (5«23) via (5«2l) to (5*19)• After 

the cooling wave has penetrated to the isothermal sphere, u is apt to 

increase again because T in the denominator of (5'19) will decrease due 

to adiabatic expansion of the isothermal sphere. Thus the velocity u is 

apt to be a minimum when the cooling wave has just reached the isothermal 

sphere. 

The variation of u with time is not very great. Likewise, the shape 

of the cooling wave changes only slowly with time. The shape is obtained 
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by Integrating (5.8); it depends on time because K is a (rather slowly 

variable) function of the pressure, and H is a (slow) function of time. 

This justifies approximately the basic assvmrption (5.1) of Z: While the 

cooling wave does not preserve its shape exactly, it does so approximately. 

The pict\jre is then that at any given time t there are up to five 

regions behind the shock. In Fig. 2 the temperature is plotted schemat

ically against the Lagrange coordinate r. Starting from the center, 

there is first the isothermal sphere (I in Fig. 2). 

I A 

E 

Fig. 2. Schematic temperatirre distribution. I, isothermal 
sphere; III, cooling wave; VI, imdistiirbed air; E, 
shock front. II, IV, and V are expanding adiabat-
Ically, 

This may be followed by a region II in which the temperatiire distribu

tion is essentially that established by adiabatic expansion behind the 
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shock, Eq. (5.15). Next comes the cooling wave III in which the temper-

atiire falls more steeply, according to (5.8). (At late times, region II 

is wiped out and III follows immediately upon I.) Region IV incliiies 

the material which has gone through the cooling wave, and now cools adl-

abatically; hence the temperature falls slowly with r (Sec. 5d). D is 

the material point from which the cooling wave started originally; region 

V, outside that point, is also expanding adiabatically, but from shock 

conditions; thus it is the continuation of region II. Finally region VI 

is the air not yet shocked. As time goes on, the cooling wave III moves 

inward, wiping out region II and then eating into region I. Region IV 

accordingly grows toward the inside, but its outer end D stays fixed. 

Region V expands into VI by shock. 

We note once more that u is the velocity in Lagrange coordinates, 

and in gm/cm sec. The problem is made somewhat more complicated by the 

three dimensions and the adiabatic expansion, cf. Sec. 6, but the prin

cipal features remain the same. 

d. Adiabatic Expansion after Cooling. Radiating Temperature 

When a given material element has gone through the cooling wave, it 

is left at the radiating temperature T . Thereafter, it will expand 

adiabatically. Equation (3.25) shows that for adiabatic expansion 

( 'adi 

or, using (5*10) 
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S log H _ y' - 1 5 log P r^ pt-1 

As long as the shock is strong, (3»26) holds and therefore 

S l 2 ^ = _ 1 . 2 l l ^ (5.26 
9 log t 7* 

15 o 
Gilmore's "̂  Tables 11 and 15 show tha t for T = 5000 to 8000 , and p = 

1 tolO bars , y var ies from about 1.13 to 1.20, so 

L i ^ = - O.li^ to - 0.20 (5.27) 
d log t 

-1.2 At l a t e tjines, p no longer decreases as fas t as t * , so H also decreases 

more slox/ly but (5.25) remains va l id . 

We use now the approximate equation of s t a t e (3«1^0 (together with 

H = 7 ' E ) and find 

, I ,1/15 .,5A 

1 , 3 7 ' - l 
15 5 1 ^ P ' 

Q 

= P̂ ^ (5.28) 

with 

2 7* - 0.9 
p = 
o 

3 - y 

= 0.136 to 0.167 (5.29) 
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using (5.25) and 7 = 1.13 to 1.20. A given material element which went 

through the cooling wave at temperature T and pressure p will now (at 

pressure p) have the temperature 

T'^T'M (5.50) • =T'M 
m I p j 

If we assume T to be independent of time, then at a given time in the 

adiabatic region (IV of Fig. 2) 

?̂  loo- T' 3 log P Q S log p 

2_i°S-i_ = - p _ _ ^ — E = £ ^̂  2: (5.51) bx 5x u §t 
m 

ut ut f u.3^; 
m m ' 

vmere t is the time at which the material element x was radiating. The m ^̂  

last step in (5.51) assumes that the velocity of the radiation wave is 

constant but is valid vhatever the time dependence of the pressirre; (5.52) 

-1.2 
assumes p ~ t * , i.e., strong shock conditions. It should be noted 

-1.2 
that t in the relation p ~ t * , and therefore t in (5.32), is the total 

time since the nuclear explosion. 

The velocity u of the cooling wave was calculated in Sec. 5c, (5.18), 

(5.19), etc. The condition for the radiating surface, nov; as in Sec. 5c, 

is that there be one optical mean free path outside it for "visible" light 
p 

as defined in Sec. ^'-h. Since we now use material coordinates in gm/cm , 

we should use mean free paths in the same unit. Table VI and (̂i-.lG) and 

{h.l2) give the required information. Ue write (4.12) in the form 
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a.Ap-l/^T'-^ (5.55) 

P 
with A = 0.10 gm/cm and n = 6.5. 

The optical depth is, according to (5.52) and (5'55) 

00 , Ti 

D = 
' ^- - ( dx \ p-"-/̂  f d -tn T' dx _ / dx \ p ^ ^ f d ̂ n T' ,^ ., ̂  

1 ut 7 ^ ~1 /.- ^-^ 

^ ^ • ^ 7 ' - 0 . 9 ^ 

Getting 0 = 1 , 7' = 1.15, A = 0.10, and n = 6.5 gives 

^.6.5^0:]i^Z£HLp-l/3 (5.36) 

Tnis is an explicit expression for 'the radiating temperature in terms of 

the velocity of the cooling wave. The latter depends in turn on the 

radiating temperatrire, increasing witn T , so that T occurs altogether 

in the 10.5 pca/er and thus can be determined very accurately. 

Equation (5.56) can be further reduced by using the relation between 

pressure and time which is, for a strong shock, approximately 

a/2 
tp-"/" = 1.0 Y^'^ [-^] (5.57) .5/6 _ , , ̂ 1/5 

fe) 
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where t is in seconds, p in bars, and Y in megatons, and p, is the den

sity of the ambient, undisturbed air. Then (5.56) becomes 

1/2 

"% •' 
U T ; ^ - 5 . O . I I Y - ^ / 5 ( ; ^ ) ^1/2 (5^38) 

The right hand side of (5-58) gives the complete dependence on Y and p^ 

since, in deriving (5.56), we have only used the opacity law (5.55) and 

the adiabatic cooling of air, (5.32), both of which are independent of 

the explosive yield Y and of the ambient density of the air. 

Now insert u from (5-19); then we obtain 

m*10.5 , J-/2 

This equation gives the radiating temperature in terms of the central 

temperature T and of the quantities on the right hand side. The radi

ating temperature is proportional to a low power of the central temper

ature (about the I/6 power); thus as the inside cools, the radiation 

decreases (see Sec. 5e for details). It also decreases slowly with time 

due to the pressure factor on the right hand side, T' ~ p ' . For given 

p and T , the radiation temperature is higher for lower yield, T' ~ Y " , 
^ J. 

and for higher altitude, T' ~ p" "' 

For sea level, for Y = 1, and for p = 5 bars (cf. Sec. 5e for this 

choice) Brode's calculations give T ?» 3.6; then (5*39) yields T' = I.08, 
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or a radiating temperature of 10,800°. This is a reasonable res-ult, 

though appreciably higher than the temperatures usually observed. How

ever, as we shall sho\'J' in Sees. 5e and f, our calculation gives the max

imum temperature reached, and is lilcely to be somewhat too high due to 

our approximations. 

e. Beginning of Strong Cooling Wave 

p 
Equation (5*19) gives the inward speed of the cooling wave in gm/cm 

sec. Precisely, this is the speed at which the point of temperature T 

(radiating teraperattire) moves relative to the material, once the cooling 

wave is fully established. But even if there is no cooling wave, i.e., 

if we have simply adiabatic expansion behind the shock, a point of given 

temperature T will move inward. This "adiabatic motion" is the minimum 

velocity which the point T can have. Therefore, if the adiabatic speed 

is greater than (5.19), it will be the correct velocity. Of coiu-se, there 

will still be a cooling wave because this is needed to supply the energy 

for the radiation; this "weal'j cooling wave" will be described in Sec. 5g« 

But its inward motion, more accurately the velocity of its foot (point C 

in Fig. 2), will not be determined by the requirement of siifficient energy 

flow, (5*19), but by the "adiabatic speed" which we shall derive from 

(5«15)' Region IV of Fig. 2 will near be absent. Thus, outside the 

cooling wave, at point C, region V will begin immediately, with the 

temperature distribution given by (3.15)* 

It is therefore important to determine the time t (and pressure p ) 
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at which u of (5.19) becomes larger than the adiabatic speed of temper

ature T . Before t h i s time t , we have a weak cooling wave. We c a l l 
i a 

this Stage C I; afterv:ards, the cooling wave is strong, and the radiation 

is essentially described by the theory of Sec. 5d (Stage C II). To 

determine the point of separation p between these two stages is a refine-
Si 

ment of the considerations of Sec. 5d. 

Tne temperature in the adiabatically expanding material behind the 

shock is a function of time and position, given by hydrodynamics and 

equation of state. The imrard motion of a point of given temperature 

relative to the material is given by 

^^ O log T/Bt)^ 

- P dt = (3 log T/p 3 R ) ^ 5̂.iK)) 

where the subscript r means that the partial derivative must be taken at 

given material point r, not at given geometrical radius R. V7e have from 

(5.15) 

3 log T 1.8 /r; 1 -•̂  
-^-3R-=(7^ -1)PR 5̂.1̂ 1) 

Sijnilarly, from (5.28) 

- i^-^)' ^'-^ - - H^ 

2 # 2 ^ 1 ^ (5.te) 
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-1.2 asstmiing the strong shock relation p ~ t * . The ratio (5«40) is then 

dr _ 0.8 (7' - 0.9)(7' - 1) pR 
^ — 

7 

p _ _ _ ^ -, :^ [^.h3) 

Here we use the relation (3.10) 

7' 
p = r t 7 ' - 1 H 

i^'hk) 

and f ind 

P g 4 (r- - 0.9) p I j i (5.1*5) 

where H has been l a b e l e d E. because i t r e f e r s t o t h e r a d i a t i n g tempera

t u r e . Here we may i n s e r t (3 ' 50 ) and ( 5 . 5 1 ) , v i z . . 

M^J^ (5.1^) 

We may then compare the result with (5.18), the velocity of the cooling 

wave (setting Ĵ  = O) 

u = ^ - r ^ (5.1.7) 

The comparison gives 

i~~ 5̂/2 H 
^ (r- - 0.9) ̂  = ̂  J, (5.W) 
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Inserting (5.55) for J , and changing the unit of p from dynes/cm to 

6 / 2 
bars = 10 dynes/cm we get 

,5/2 _ 
= 570 

^ ' 17 /5 
f^ 9 1 1 

^ ° l o J i 7 ' - 0 . 9 T ' 5 / 5 . T ; 5 / 5 

With p = 1.29 X 10"^, y = 1.15 t h i s becomes 

= Ih 

1/5 rp'5V9 n -2 /5 

(5.i+9) 

Setting now p. = p^ and choosing, as in Sec. 5d, T 

yields 

5.6 and T = 1.08 

p =5.0 bare (5.50) 

Thus the critical pressure is 5 bars, which was the reason for the choice 

of this number at the end of Sec. 5d. There it was shown that 5 bars and 

T' = 3.6 leads to T, = I.08 so that our nimibers are consistent. 
c 1 

We had to rely on Brode's solution to find T for a given p; this 

could only be avoided by obtaining an analytic solution for the Isothermal 

sphere which will be discussed in a subsequent paper. Apart from this 

our treatment is analytical, making use of the equation of state and the 

absorption characteristics of air. 
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f. Maximum Emission 

In this section we consider Stage C I, i.e., the condition when the 

pressure is larger than p , (5•50). Then the radiating surface is in 

the adiabatic region described in Sec. 3c. The condition for its posi

tion is, (3.21), -t = R/50. From Brode's cvirves, the position of a point 

of teniperatiire T near 1 is given approximately by 

R = 0.78Y^/5^-°-^%-^/^ (5.51) 

This expression comes purely from the numerical calciilation, except that 

the correct dependence on yield is inserted. Y is in megatons, p in bars, 

R in kilometers. Equation (5*51) holds from p = 5 to 100 bars within 

aboiit 5̂ » The absorption coefficient is given in (4.10), which yields 

I = l._ g»7 X 10-^ (^_o\ ^'-7 

"t̂ " Po V/ 

= 8 X io5p-l-^5 '̂-'+.9 ̂  (̂ ^̂ 2) 

using the equation of state (4.11). Equating this to 1/50 of (5.51) 

gives 

T'^.8=U.5Y-^/5p-^.20 (5.53) 

T'=1.57Y-°-^^p-°-25 (5^5^) 

Thus the radiating temperature increases as the pressure decreases. 
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Since p ~ t , 

T'~t°-5 (5.55) 

i.e., the increase of temperature with time is fairly fast. This is 

entirely due to the "opening up" of the shock, i.e., the decrease in 

absorption with decreasing density (pressure). 

For given pressure, the radiating tenrperatinre (5*54) is slightly 

higher for smaller yield, an effect which has been observed. A factor 

of 1000 in yield corresponds to a factor 1.6 in temperature, hence a 

factor 7 in radiation per unit area. The total radiated power (assuming 

black body) at given p is proportional to 

„2 _,4 „2/3-0.26 -2/3-1 „0.4o -5/3 (^ =<x 
R T ^Y ' p ' ~ Y p (5«5o) 

The relatively low power of the yield is remarkable in this formula, 

which describes Stage C I. Since the total energy radiated should be 

approximately proportional to Y, the duration of Stage C I is then pro

portional to Y * . The observed time to the second radiation maximum 

0.^ I 

is about proportional to Y * . Our theoretical dependence of T on yield 

is therefore somewhat too strong. The time dependence of (5.56) is quite 

strong, about as t . 

As we have shCT>m in Sec. 5e, Stage C I ends when the pressure reaches 

5 bars. For this value of p, and for Y = 1, (5*54) gives T =0.92. 

This is slightly less than the T ' = I.08 deduced in Sec. 5d for the same 

p and Y from the cooling wave. The discrepancy must be due to a small 



inconsistency in owe approximations. 

In our one-dimensional theory, the end of Stage C I marks the max

imum of radiation, both in temperature and total emission. In Stage C I 

the radiating temperature increases with decreasing pressure, (5.54), 

because the material becomes more transparent. In Stage C II the reverse 

is the case, (5.59), because the material which has gone through the 

cooling wave becomes thicker with time, (5.52). This material provides 

opacity for the visible light from the fireball; since it becomes more 

opaque, the radiation must now come from a layer of smaller absorption 

coefficient, (5.55), and therefore of lower temperatirre. As (5«56) sho\fs, 

the increase of thickness (t ±n the denominator) is more important than 

1/5 the continued decrease of density (factor p ). These results will be 

modified in the three-dimensional theory. Sec. 6. 

The maximum temperature has been calculated as T = 0.92 or I.08, 

from our two calculations; it is clearly close to 1, i.e., 10,000°. 

This number is not too much out of line with observation considering 

that we have calculated a maximum. In fact, the transition from Stage 

C I to C II cannot be sudden as we have assumed; the cooling wave must 

begin gradually, and therefore the temperatvire peak which we have calcu

lated will actually be cut off (Fig. 3). The observable maximum may 

easily be 1000 lower than our calculation. 
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CALCULATED 

LOG t 

Fig. 3. The calculated increase in temperature in Stage C I , 
and decrease in Stage C II (straight lines), and the 
estimated actual behavior. 

The radius of the radiating surface Increases with time in Stage 

C I. Inserting (5.54) into (5*51) gives 

^^^0.34^-0.225^,0.27 
(5.57) 

In Stage C II, the sixrface moves rather rapidly inward relative to the 

material, due to the cooling wave. In addition, for sea level explosions 

at least, the pressure is no longer much above ambient, so that the out

ward motion of the material slows down. Thus the geometric radius of the 

radiating surface no longer increases much, and soon begins to decrease. 

Therefore, the total radiation will reach its maximum at the same time 

as, or very soon after, the maximum of the temperature. 
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g. Weak Cooling Wave 

In Stage C II the cooling wave dominates the radiation (Sec. 5d). 

In Stage C I the cooling wave also exists, because the energy of the 

radiation must be provided. However, the speed at which the wave proceeds 

irarard is now governed by the adiabatic expansion, (5.45). In order to 

obtain the correct flux of radiation J., at the radiating surface, we 

must therefore use (5.18) in reverse: The temperat-ure T at the inner 

edge of the cooling wave (point B in Fig. 2) will regulate itself in such 

a way that (5.l8) is satisfied, with u given by (5.45). Using (5.46), 

we thus get the condition 

]WI(^. .0.9)5!^ = ^ 

1 

or solving for H and inserting numbers: 

(J. - J.) (5.58) 
n._ - JO-

Pn 
9 \[^ \ - \ "̂̂  "° 

•̂̂ 0 ' ^ 1 , 15 J^p-^/^T'^ (5 59) 
— 1 - V ^ i " ^ ' -0-9 IPo^ 1 ^^'^^^ 

Neglecting J_, we find that H increases rapidly as p decreases. 

We may insert (5*54); then the right hand side varies as p ~ t . 

Thus the cooling wave starts very weak and then rapidly increases in 

strength. Its "head" (point B in Fig. 2) is at first close to its foot 

(point C). As time goes on, it moves more deeply into the hot material, 

eating up region II of Fig. 2. The energy which is made available for 
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radiation is essentially the difference H_̂  - H_ : The material drops 

suddenly in temperatxire from T to T as the cooling wave sweeps over 

it, and the energy difference is set free for radiation. 

The term J depends on H , on p, and on the temperature gradient 

in the region inside the cooling wave (region II). If this region is 

adiabatic, the temperature gradient can be calculated from (5.15)* Since 

J is also related to the temperature gradient in the adiabatic region 

IV, the ratio J,-,/J, tends to tinity as H -> H . Thus the left hand side 

of (5.59) will have a certain minimum value. This seems to indicate 

that there is no cooling wave at all until the pressure has fallen below 

a certain critical value. We have not investigated this point in detail. 

It is possible that it is simply related to the break-away of the lumi

nous front from the shock wave, i.e., the beginning of Stage C. 

EqTjiatlon (5*59) describes the weak cooling wave in Stage C I no 

matter what the distribution of temperature in region II. The stage 

comes to an end when H. reaches the maximum possible value, H . There-

0 ' c 

after, the wave described by (5.59) becomes inadequate to supply the 

radiation energy: Since the enthalpy can no longer increase, the speed 

of the cooling wave has to increase. This speed is then given by (5.19), 

and Stage C II has begun. 
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6. EFFECT OF THREE DIMENSIONS 

a. Initial Conditions and Assumptions 

The fact that the fireball is spherical causes some deviations from 

the one-dimensional theory of Sec. 5* In this section we shall discuss 

Stage C II, the penetration of the cooling wave into the isothermal 

sphere, in three dimensions. Initially, we ass-ume that the cooling wave 

has just reached the isothermal sphere; we call the corresponding time 

t = t , and the pressure is the critical pressure p = 5 bars derived in 

Sec. 5d. Subsequently, the mass of the isothermal sphere decreases due 

to the cooling wave. 

We assume that the material, which is at temperature T > T = 4000 
' ^ m 

at the initial time t , will stay in this temperature range throughout 
a 

Stage C II. This is reasonable because this material will be heated by 

the ultraviolet radiation coming from the inside, because of the strong 

absorption of air of medium temperature (3000 to 6000 ) for UV (Sec. 4c). 

The UV heating is expected to compensate approximately the cooling due 

to adiabatic expansion of this material; this is confirmed by rough 

estimates of the heating and cooling. We do not know hovr the temperature 

is distributed in the "warm layer" between the radiating temperatiore T 

and the temperature T = 4000 ; this covild only be determined by a detailed 

calculation of the UV radiation flow in this region. We assimie that the 

distribution is smooth, as it is in Stage C I, and that therefore the 

thickness of the "warm layer" in gm/cm is directly proportional to the 
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required mean free path of visible light at the radiating temperatixre 

(also in gm/cm ) which in turn determines T.̂  itself. 

We take the initial conditions from Brode, using his curves at a 

time when the inside pressure is 4.1 bars, this being closest to p = 5 
Q. 

bars of all the curves he has published. This corresponds to a scaled 

(1-megaton) time t = 0.325 sec. At this time, important physical quan

tities are as given in Table VIII (dimensions scaled to 1 megaton). The 

last colimm of the table is not given by Brode but will be explained in 

Sec. 6c. In the table, we have defined a quantity proportional to the 

mass. 

•I m = p̂ "- I p(R)R^ dR (6.1) 

0 

where R is measured in hundreds of meters. It is interesting that the mass 

of the warm layer is much [6.6 times) larger than that of the isothermal 

sphere. Its volume is about 2.4 times larger in Brode's calculations. 

Table VIII. Conditions TThen Cooling Wave Reaches Isothermal 
Sphere, According to Brode 

Isothermal Warm Layer 
Sphere Brode Sec. 6c 

Outer radius, meters 385 577 438 

^ 2.20 X 10"2 11 X ic-2 

"Mass" m defined in (6.I) O.I50 0.99 0.99 

Average density/p 0.79 X 10 2.20 X 10"^ n X 10 

Mean temperatxire T' 3.O — 0.70 
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b• Shrinkage of Isothermal Sphere 

V7e denote the "mass" of the isothermal sphere, as defined by (6.1), 

by m . Then this mass will decrease, due to the progress of the cooling 

wave inward, according to 

Note the p„ in the denominator and the absence of the factor 4jt, both 

due to the definition (6.1). The density of the isothermal sphere is 

nearly uniform and will be denoted by p. . Initial values at time t 

IS a 

will be denoted by a subscript a. The isothermal sphere expands adia

batically, hence 

1/7 

Pis = P a ^ ^ ^ (6-5) 
( f c ) 

and therefore at any time t 

vi/r 

fe)-fe)fr) 
(6.4) 

The speed of the cooling wave is given by (5«10), thus 

U = Tj sr- (6.5) 
HQ - H^ 

where J_ has been set equal to zero because there is no appreciable flow 
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of radiation inside the sphere. H is the enthalpy inside the sphere, 

which decreases adiabatically 

(7-l)/7 

( f c ) 

H. : is the enthalpy at the radiating surface. It will be shown in Sec. 6c 

that the temperature T.̂  is nearly constant with time, so that in good 

approximation K. and J_ in (6.5) are constant. We shall also make the 

poorer approximation that H_ « H . Then (6.5) and (6*6) give 

u = u I — I 
a\p / 

(7-l)/7 

(6.7) 

Inserting (6.4) and (6.7) into (6.2) and making the equation dimen-

slonless. 

, / \ u t R̂  /R \^ 
d / 5 _ \ _ a a a 1 _1 I u_ 

Va /^ \ 
Pa\ W / 

1-1/37 
(6.8) 

We define 

t 

a 

.1/3 

W 
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p 
f(x) = -^ 

p 

A = ̂  (6.9) 
^a a 

and obtain the simple differential equation 

g = -Af(x)l-l/5^ (6.10) 

which y ie lds , together with the boimdary conditions, 

X 

y = 1 - A I f(x')^-^57 ̂ . (5^^^) A ffCx')^-

is 

1 

The constant A can be determined from Sec. 5e. The condition there 

û  = - P H (6.12) 

where p is the density outside the cooling wave. According to (5.'!-4) 

Pa ^1 

Then using (5.^5) 

a _ a î  (y* - 0.9)(7' - 1) a — ^—- , _ {6.1k) 
Pa ^ ^ '' *a 
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Using T' = 5.6, T' = 0.98, H ~ T^'^, we find H /H = 8.7. Using further 

7' = 1.18, A in (6.9) becomes 

A = 8.7 X I X '^•'•Wl'^^ = 0.166 (6.15) 

which is a pure number, and small: The calculation could be improved by 

not neglecting Ĥ  compared with H . 

According to (6.II) the fireball is used up at the time x defined 

by 

X 

/ 

^(^,)i-i/57 a^. = 1 = 6 (6.16) 

This relation is valid (granted the approximations we have made) what

ever the relation between pressure and time, f(x). This generality is 

useful for sea level explosions, where p is only 5 times ambient pressure: 

The relation between p and t can then be taken from a machine calctilation 

(or observation). 

For higher altitude, let us say h > 10 km, p = 5(PT/P^) is 

sufficiently above the ambient pressure, p./p , so that the shock is 

still strong and we may use 

f(x) = x^*^ (6.17) 

Then (6.11) becomes 
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2.2-0.4/7 , 

y = 1 - ̂  " 2.2 - 0.V7 ^^-"^^ 

From 7 = l.l8, 

1.86 
12.2 - X //. . 

y = jj^ (6.19) 

and the isothermal sphere disappears for 

Xg = 12.2^/^*^ = 3.8U (6.20) 

For these higher altitudes, then, the time when the isothermal sphere 

disappears is a fixed miiltiple of the time when it is first reached by 

the cooling wave. This multiple depends only on 7, and on the ratio 

H /H of internal to external enthalpy at time t . The pressure at the 
C _L 3> 

time Xp is 

•Ha'" Pg =Pa^2^*^ = l-0(;e^| (6.21) 

For sea level, f(x) increases more slovrly (the pressure decreases 

more slo\/ly) with time; hence it takes somewhat longer to use up the iso

thermal sphere. Conversely, the pressure at the time t_ = t x will have 

decreased by a smaller factor from p . 
3. 

For the simple case of higher altitude, we can use (6.19) to calcu-

3 
late the fraction of the mass y which will still be in the isothermal 
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sphere, its radius B /n , and other physical data. Some of these are 

given in Table IX. It is seen from the table that the mass decreases, 

first fairly uniformly and rapidly (as if it would go to zero at x = 2.8), 

then more slowly (because it is proportional to y ), while the radius 

first expands slightly, then shrinks slowly and at the end very rapidly. 

The latter phenomenon, the rapid shrinking of the apparent fireball, may 

not be observable because the bomb debris becomes visible and is likely 

to be still opaque. But some shrinkage of the fireball shoxild be open 

to observation. 

Table IX. Development of Isothermal Sphere and Warm Layer 
due to Cooling Wave 

1.2 1.5 2.0 2.5 3.0 3.5 3-8i^ 

o.96i^ 0.899 0.766 0.599 0.11-02 0.188 0 

0.895 0.726 0.i^50 0.215 0.065 0.0066 0 

1.029 1.031 0.970 0.818 o.58i^ 0.287 0 

1.137 1.194 1.248 1.296 1.326 1.362 1.426 1.483 

L* 0.137 0.129 0.126 0.129 0.150 0.180 0.214 0.247 

The last two lines of Table IX will be explained in Sec. 6c. 

c. The Warm Layer 

We want to ass\jme that the outer edge of the warm layer, the 4000° 

temperature level, stays fixed in the material (Sec. 6a). We wish to 

calcixlate the thickness of the warm layer in gm/cm , 

X = t / 

Vv 
V\ 
^ 2 / \ 

*a 

= y5 

1. 

1 

1 

1 

1.] 

,0 

-3' 
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i' L = p(R) dR (6.22) 

^1 

where R^ is the outer edge of the layer. The original mass of the warm 

layer m is much larger than that of the isothermal sphere 

m^m^ = B = 6.6 (6.23) 

At a later time, the mass of the warm layer is then 

(B + 1 - y^) (6.24) m^ = m 
a 

It does not change much. 

The temperature in the warm layer goes from 10,000 to 4000 . For 

simplicity we assume that the density corresponds to the average temper

ature of 7000 . Then, at the initial pressure used in Table VIII, p = 
a 

_o 
4.1 bars, the density of the warm layer is p = 11 x 10~ p = l4p . 

This is much higher than in Erode's calculations, Table VIII: In his 

calculations, the cooling wave has not reached the isothermal sphere; 

with our assiimptions it has. The difference is due to the different 

opacities assumed; it has the consequence that our warm layer is geo

metrically much thinner than his (Table VTII, last column). Subsequently 

the density decreases with pressure, not adiabatically but isothermally; 

in accord with Gilmore's formiila (3.13)^ we assume 
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vl.ll . .1.11 

P2 

with C = 1 4 . 

'^{k) -'^'(^^) '̂ •̂ ' 

On this basis we calculate the outer radius R^ of the warm layer 

and find 

, 5 . . 3 _ 3 B j _ i ^ r „ , ..10/9 R^ = R^ + R^ ̂  - ̂ ^- ̂  [f(x)]""/^ (6.26) 

Using (6.17) we can then calculate RO/R • We give this quantity in the 
£̂  a 

second last line of Table IX. In the last line, we have given the mate

rial thickness of the warm layer, in relative units. 

a a 

It is seen from the table that R- increases only slowly; the main 

change in R- - R^ at later times is therefore due to the decrease of R,. 

The material thickness L first decreases very slightly; this continues 

about as long as R increases, and is due to the fact that abovtt the same 

mass of warm material gets distributed over a larger area. Later on, L 

increases while R decreases. Until x = 2.5 the change of L remains 

less than 107>, and after x = 2.5 the calculation is probably meaningless 

because the bomb debris comes into viev;'. Therefore, we may assume L' 

constant, and thus the optical mass absorption coefficient (in cm /gm) 

at the radiating layer will also be constant. In contrast with this 
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result of the three-dimensional considerations, the one-dimensional for

mula (5*35) yields a decrease of n/p as t" . 

Using (5»33)> a constant mass absorption coefficient requires 

T • ~ p-l/3n ̂  ^-1/20 (g^28) 

Thus in three dimensions, the temperature continues to increase slowly 

after the cooling wave reaches the isothermal sphere. If we assimie that 

times up to X = 2.5 in Table IX are significant, the pressure decreases 

by about a factor of 3 in Stage C II, and the temperature of the radiating 

layer increases by about ^p according to (6.28). The radiated power, 

2 i4 fi 

being proportional to R T^ , may increase by about VJft up to x = 2, 

and then decreases due to the shrinkage of the radiating surface. 

One prediction of this theory is that the temperature, as well as 

the radiated power, has a rather flat second maximum while the isothermal 

sphere radiates away its energy. The slow variation of T justifies the 

treatment of Ĵ  as constant in Sec. 6b. 

7. TRANSPAREtW FIREBALL (Stage D ) 

After the isothermal sphere has been eliminated by the cooling wave, 

the fireball is transparent if we neglect the effect of the bomb debris. 

At this time the pressure is given by (6.21), the average temperatirre of 

the "warm" region is about 7000 , and the corresponding density is about 
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0.37 

Po/ 

If we assume that the radius R of the isothermal sphere scales with 
a 

-1/3 
p ' (which may be wrong) the radius of the warm sphere is now 

/ Pof^ 
R^ = 570 [Y — ) meters (7.2) 

where Y is in megatons. Therefore, along a radius, the amount of warm 

material is about 

p̂ R̂ ^ = 1.7 Y^/5 ^n/cm^ (7-5) 

almost independent of ambient air density. 

Taking Pv̂/P/-, = 10 (which corresponds to P^/p^ '^ 10' ) and an 

average temperature of 7000 , Meyerott's tables give for the visible: 

ti« 0.4 cm /gm (7-4) 

so that the radius represents 0.7 optical mean free path at 1 megaton. 

This is nearly transparent, and the fireball becomes rapidly more trans

parent as it cools down by further emission of radiation. The emission 

of radiation is then proportional to the opacity; for each material 

element. 
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f = - 4KaT^ (7.5) 

p 
where a is the Stefan-Bolt zmann constant and K the opacity in cm /gm, 

i.e., the absorption coefficient averaged over a Planck spectrum (dis

regarding spectral regions which are still black). Since K increases 

rapidly with temperature, the hottest region near the center will cool 

fastest, so that the temperature tends to become more uniform. 

For the same reason, the radiative cooling will effectively stop at 

a temperature of about 5000 . At this temperature and p = 0.01p_, it 

takes about 5 seconds to cool the fireball by lOfS. At 4000°, this takes 

25 
about 200 seconds. Gilmore 'has calciolated c\irves of cooling times for 

transparent bodies at various densities as a function of the final temper-

atvace. 

Depending on the ambient density, the pressure may or may not have 

decreased to ambient pressure when the teraperatiire has decreased to 5000 . 

Even if it has not, the subsequent adiabatic expansion will not lower the 

temperature much fvirther. (Our theory is not applicable to very lcf\7 

ambient densities because there the isolation of isothermal sphere from 

the outside never takes place. Probably the limit of applicability is 

about P-i/Pf-, = lO" . Therefore, and because of the small value of 7 - 1, 

expansion cannot be large.) Therefore, after both radiation and hydro

dynamics have effectively stopped, the fireball is left at a temperature 

not much below 5000 . 

Any further cooling can only be achieved by the rise of the fireball 
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due to its bouyancy, and the turbulent mixing associated with this rise. 

This is a slow process, taking tens of seconds. 

Since the emission is now proportional to the absorption coefficient, 

the molecular bands will now appear in emission while in earlier stages 

they appear in absorption. This has been observed. 

The debris, at the center of the fireball, contains metals and 

therefore is likely to be opaque at lower temperatures. Therefore the 

debris may well be opaque after all the air has become transparent. The 

debris usually has a ragged shape due to Taylor instability. Recently, 

26 
Longmire has given a tentative, quantitative theory of this instability 

in debris expansion. Because of its higher opacity, the debris may cool 

to a lower temperature than the surrounding air. 

% 
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